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Abstract. A theory for the activationless generation—recombination current density in type Il
heterojunctions such as InAs/GaSh is developed on the basis okié 8 matrix Hamiltonian

(the Bodnar model). The activationless recombination rate and current—voltage characteristics
of an InAs/GaSb heterojunction are calculated. It is found that under a forward bias the current
density increases with increasing applied voltage, finally becoming non-linear. At small applied
voltages, the current-voltage characteristics are linear and the heterojunction has the properties
of an Ohmic contact. This is in agreement with the experimental results.

1. Introduction

There has been considerable interest in the study of InAs/GaSb type Il heterostructures
and superlattices using molecular-beam epitaxy techniques (Sekakil977, Kono and
McCombe 1997). The transport and optical properties of these systems have been the
subject of various experimental and theoretical investigations (Bastard 1988). InAs/GaSh
superlattices exhibit an interesting semiconductor-to-semimetal transition (S4khRO77,
Barneset al 1993). Recently we found that the semiconductor-to-semimetal transition in
InAs/GaSh superlattices depends not only on the layer thickness but also on the anisotropy of
the band structure of the samples and the band overlap of the two constituent semiconductors
(Lau and Singh 19964, b).

In direct-gap semiconductors, an electron from the conduction band can make a transition
down to the valence band and subsequently recombines with a hole via the emission of a
photon. This process is calledirect recombination On the other hand, in the case of
indirect-gap semiconductors, the emission of a photon due to the recombination of an
electron and a hole usually involves the emission of a phonon to satisfy conservation of
momentum. This process is call@direct recombination It is important to note that both
processes occur in the presence of a third particle such as a photon, phonon, or impurity. The
aim of the present paper is to propose a theory for electron—hole recombination processes
which do not require the presence of a third particle. These types of recombination process
can occur in semimetallic type Il heterostructures such as InAs/GaSb. /Bntype I
heterostructures, the conduction band of the A semiconductor lies beneath the valence band
of the B semiconductor. This negative, or crossed-gap configuration of A/B heterostructure
leads to a charge transfer between the A and B semiconductors which generates intrinsic
carriers (electrons and holes) on either side of the interface. Due to the band overlap between
the conduction band of A and the valence band of B, there are activationless recombination
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Figure 1. The potential band-edge profile of an InAs/GaSb heterojunction.

processes which do not require the presence of any third body. Therefore, we call this
activationless recombination.

We have developed a theory for the current density due to the activationless generation—
recombination processes in type Il heterojunctions. Analytical expressions for the
activationless generation rate, recombination rate, and current density were derived in the
framework of the envelope function approximation based on the Bodnar model (Bodnar
1978). We numerically calculated the recombination rate, current-voltage characteristics,
and conductance of an InAs/GaSb heterojunction. In addition, we also calculated the current
density as a function of the temperature of the heterojunction. We found that under a forward
bias the current density increases with increasing applied voltage, eventually becoming non-
linear. We also found that the current—voltage characteristics are linear at a small voltage.
This implies that the InAs/GaSb heterojunction has the properties of an Ohmic contact for
low voltages, in agreement with the experimental results (Esaki 1980).

2. Theory

We consider the Bodnar 8 8 k - p matrix Hamiltonian (Bodnar 1978). This model
includes the electron—hole interaction along with non-parabolicity and anisotropy of the
band structure, whereas the Kane model does not include the latter effect (Betstrd

1991, Seileret al 1977). The Bodnar model has been extensively used by Singh and
Wallace (Wallace 1979, Singh and Wallace 1983) and others (Lamrani and Aubin 1987) to
calculate the optical and transport properties of narrow-gap semiconductors. The electronic
structure of semiconductors such as InAs and GaSb can be described by a pseudoangular
momentumJ and its projection/; along thez-axis. Thel's symmetry corresponds to

(J, J.) = (3. £3), thel's symmetry corresponds td (J.) = (3, £3)and ¢/, J.) = (3, +3),

and thel'; symmetry corresponds to/(J,) = (3, £1). Furthermore, the/, = +2 states
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correspond to the heavy particle$g-heavy holes (HH), and thé = i% states correspond
to the light particles—F¢ electrons,I'g light holes (LH), andl'; spin—orbit split-off holes
(Bastardet al 1991).

Here we consider an A/B semiconductor heterostructure which is grown along the
axis and in which electrons are free to move in tkieY plane. The potential profile
of an InAs/GaSb semimetallic heterojunction is shown in figure 1. The potential steps
Vs(2), Vp(2), and Vs(z) shown in the figure arise from the band offsets of the conduction
and valence band edges across an interface due to the mismatch of the band gaps at the
interface. HereVs(z) = Vo + Ef} is the I's offset, Vo(z) = Vo + Ef is the I's offset,
and Vs(z) = Vo + Ef + Aa — Ag is the I’y offset, whereVj is the band overlapEd
and Ap respectively are the energy gap and the spin—orbit coupling parameters of the
InAs semiconductor, andfg and Ag respectively are the energy gap and the spin—orbit
coupling parameters of the GaSb semiconductor. The energy zero is takenlgtdtge,
which is the bottom of the bulk InAs conduction band. The potential can be written as
Vsps(z) = VspsY(z) whereY(z) = 0 for z < 0, andY(z) = 1 for z > 0. Note that the
zero of thez-axis is taken at the interface of the heterojunction. We modify the Bodnar
Hamiltonian for type Il heterostructures, and it is written as

Vs(2) 0 E J%wi-w@mh,o \@m@ V@&h‘
0 Vi) 0 ik \[JZrk D —[irik \[iPk
A 0 0 0

D 0 0 0

Jipk  JiPke o B 0 o /% 0

SNV SN 7 VR B 0 0 /28
E 0

0 0o 0 o 4 o0
NEYTRNENEY O R 0 0o c 0
| Jirke Jipk 0 o0 ~Jzs o 0 c |

)
where the diagonal elemen#s B, andC are
A=—E} +Vp(2)

A 2
B =—E§ = 38+ %)

A 1
C=—Ep —An— 30+ V(@)

and we have made the replacements
D =Pk, E=Pk_

for reasons of space. Heke = /1/2(k, % ik,). k., ky, andk, are the components of the
wavevectork alonga [100], b [010], andc [001] respectively.P; and P, which are taken

to be the same in the two semiconductors are the non-zero matrix Kane elemenissand
the crystal-field anisotropy parameter (Singh and Wallace 1983). In equation (1) we have
seth =1,c=1,e =1, andmg = 1. The eight-component eigenvectdr), ..., |¢s))
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of the above Hamiltonian within each layer of the heterostructure are written as
|p1) = 8o (PLk_|3) + v/2/3Pyk.|ps) — /1/3P k. |ps) + v/2/3Pk.|¢7)

+ 2/3P k,|¢g))
92) = 80 *(v/1/3PLk_|pa) + v/2/3Pjk.|ds) + Pk |pe) — v/2/3P k_|¢7)
+ V2/3Pjk;|¢s))

l3) = g1 Piky o)
¢6) = g1 PLk_|¢2)

)

| )
|pa) = (g1 + 28/3)"X(—y/2/3PLk_|¢1) + /2/3P k. |¢2) — v/2/35|¢8))

) =

)

ps) = (g1 + 28/3)"1(y/2/3Pyk.|¢1) + V/1/3PLk_|$2) — v/2/38|b7))
¢7) = g5 (V1/3Pjk.|d1) — v/2/3P Lk |p2) — v/2/38|¢a))
p8) = g5 -(v/2/3PLk_|¢1) + /1/3Pk;|¢p2) — v/2/35|¢ps))

wherego=E — Vs, g1 = E + Ef} — Vp, andgo = E + Ef + Aa +8/3— V;.
From equation (2), we get two coupled equationsdit) and |¢,) within each layer of

the system:
hir hiz || 1é1) | _
[h21 hzz][msz)]‘o‘ @)

The matrix elements of the equation above are given by
hiy = PP(k-gy ks +kigy ko + ke D™ gsko + k-D " gski) /2 + P (k: D™ gak:) — go

(4a)
h1a = V2P P (k_D "gek: — kD 'gek_)/3 (4b)
where
h11 = ha hio = h,

=E+Ey+An— Vs ga=E + E} +2Ap/3—2V5/3— V,/3
g5 =E + Ey + Ap/3— V5/3—2V,/3 g6=Ar—Vs+V,
D =y/gog1 Y = gog1(g182 + 20g3/3).

By requiring continuity of the wavefunctions and the probability current across the
interface between the two layers, we obtain the boundary conditions given by Lau and
Singh (1996a, b). Using these boundary conditions, we calculate the reflected amplitude
(Cy) and transmitted amplitude”() for the wavefunctions. The results are
KACA 1+ kBCB t= KACA 1 kBZB
where¢ = fzgo/)/, andk, = (y — flk )f2 . Note that the incident amplitude of the
wavefunction is taken to be unity.

With the help of equation (3) and the probability currents defined by Singh and Wallace
(1983), we obtain the probability currents for the incident wa¥g, (eflected wave %),
and transmitted waveJy) at the interface as follows:

Jy = 2P} (gl + 2¢8)k/(3Dn)

Ji= 2P} ct Ci(g? + 2g5)k2/(3Dg).

Cr = (5)
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Finally, using the expressions fay, J;, andJ;, we obtain the following expressions for the
reflection coefficient R) and transmission coefficient'{:
(kEcA — kBeP)? AR AkEEE
(KB 4 kBeB)? KB+ kBB
One can easily see that equation (7) satisfies the condffien R = 1 as required by
conservation of probability current. Note that due to the in-plane translational invariance,
the in-plane wavevectok( = (k., k,)) is the same in both the A and B layers. We have
also obtained the expressions fbrand R for the case in which an external magnetic field
is applied perpendicular to the plane of the interface. The results are given in the appendix.
Now we define the activationless recombination rate per unit energy for electron—hole
pairs at the heterointerface as the electron flux crossing from the A layer to the B layer.
Note that the recombination processes take place only within the band-overlap region, that is,
within the energy intervak = [0, Vp]. The expression for the activationless recombination
rate per unit energy is written as

@)

kp
R(E) = / dks ko pa(E, k) Tass (. k VA (E, kL) ®)
0

whereTa_g(E, k) is the coefficient of transmission from A to Ba(E, k) = [akf/aE]
is the electron density of states of the A layer, af{E, k) = [9k2/dE]"! is the
velocity of the electron incident from the A layer propagating in the positidiérection.
The upper integration limit for the in-plane wavevectar in equation (8) is given by
kp = min[k} M kBma] \where min stands for the minimum value ™ = (ya/f)Y/2
and kB™m = (yg/fE)1/2. By taking the upper bound of the, -integration to bek,, the
condition for electrons crossing the interface without total reflection is automatically taken
into account.

Similarly the expression for the activationless generation rate per unit energy is written
as

kp
Ry(E) = /0 dk, kipg(E, k) Te—a(E, k)vE(E, k1) (9)

whereTs_a(E, k) is the coefficient of transmission from B to Ag(E, k) = [8kZB/8E]
is the electron density of states of the B layer, afidE, k) = [0k2/3d E]~1 is the velocity
of the electron incident from the B layer propagating in the negagdérection. When
the system is in thermal equilibrium, the generation rate is equal to the recombination rate,
i.e., Ry(E) = R/(E). In other words, in thermal equilibrium, the electron flux due to the
generation processes is exactly compensated by the electron flux due to the recombination
processes.

Finally, we calculate the current—voltage characteristics of a type Il heterojunction. If
a voltage is applied to the heterojunction, then the system is no longer in an equilibrium
condition, i.e., the Fermi level will no longer be constant throughout the system. As a
consequence, there is a net current flow through the interface ¢6hlk1998). Hence, the
recombination current density crossing the interface from A to B is written as

Vo
Jnos = /O Re(E) fa(E — i) [1— fa(E — ug)] dE. (10)

Similarly, the generation current density crossing the interface from B to A is given by

Vo
Jon = /O Ro(E) fa(E — ue) [1— fa(E — pa)] dE (11)
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where fa g(E) is the Fermi distribution function anda g is the Fermi level. Since the
generation and recombination processes take place only within the band-overlap region, we
must integrate the above expressions over the band-overlap regiott, +€[0, Vo]. When

an external potential{) is applied, the net current density is written&as = Ja—s— Js—a

and the external potential satisfi®s = ua — ug. The conductance per unit area at the
interface is simply given bys = Jne/ V.
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Figure 2. The domain of integration irk, and E (shaded region) for the generation—
recombination current density in an InAs/GaSb heterojunction.

3. Results and discussion

In this section, we present the results of numerical calculations for the activationless
recombination rate, and current—voltage characteristics of an InAs/GaSb heterojunction.
The band overlap between the conduction band of the InAs semiconductor and the valence
band of the GaSb semiconductor is approximatehb@V, and the electrons and the holes
are located in the InAs and the GaSb semiconductors, respectively. The following are
numerical values for the parameters used in our calculatidfys= 0.15 eV,§ = 0 eV,
E, = 2240 eV, E, = 2240 eV, Ej = 042 eV, Ay = 0.38 eV, E§ = 0.81 eV, and
Ag = 0.755 eV. In the calculation of the recombination rate and current density one has
to calculate the integration limit,. In figure 2 we plot the calculated values &gf as a
function of energyE. It is important to note that, whefk,, E < 0.102 eV) is outside the
shaded region in figure Zqﬁ is imaginary whereas? is real. On the other hand, when
(kp, E > 0.102 eV) lies outside the shaded regiaf},is real whilek®? is imaginary.

Using equation (8), we can calculate the dimensionless recombinatiomRaRemax
as a function of energy¥, where Rymay iS the maximum value of the recombination rate
R;. The results are presented in figure 3. The recombination RAtE) vanishes at the
band edges, i.eE = 0 and E = V. This can be easily understood from equation (8),
namely the recombination ra# (E) is directly proportional to the transmission coefficient
Ta_s(E, k1) given by equation (7). The values of the transmission coefficient are zero at
the energie = 0 andE = V;, which correspond to the conduction band edge of the InAs
semiconductor and the valence band edge of the GaSb semiconductor, respectively. Since
there is no band mixing at the band edges, the band overlap between the wavefunction in
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Figure 3. The calculated dimensionless recombination rB{¢R;may as a function of the
energyE.

the InAs semiconductor and that in the GaSb semiconductor vanisltes-#& andE = V.
Hence the recombination rate becomes zero at the end points.

05}

04 -03 02 01 0 01 02 03 04
V (volt)

Figure 4. The calculated dimensionless generation—recombination current dépsityimax as
a function of applied voltag® at temperature of 100 K (solid line) and 400 K (broken line).

Next we calculate the current—voltage characteristics of an InAs/GaSb heterojunction.
We show the calculated dimensionless current dengijty Jmax @s a function of applied
voltage V for two different temperatures in figure 4. HeJgax is the maximum value of
the current densityt. The solid and broken lines correspond to the temperatures 100 K
and 400 K, respectively. Under forward bias, i.e. #r> 0, the current density/et
increases with increasing applied voltagebecoming non-linear and eventually saturating
at a voltage approximately equal td38 V. Note that when the applied voltage is zero, the
Fermi level of the InAs semiconductor is the same as that of the GaSb semiconductor. As
a result, the net current densifife; is zero atV = 0 as shown in the figure.

Under reverse bias, i.e. fof < 0, the current density also increases with increasing
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Figure 5. The calculated dimensionless conductaft&s max as a function of applied voltage
V at a temperature of 100 K.
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Figure 6. The calculated dimensionless generation—recombination current dépgityimax as
a function of temperatur@ with applied voltageV = 0.025 V.

applied voltageV, becoming non-linear and saturating at a voltage approximately equal
to —0.27 V. It is important to note that at small applied voltages, i.e.|f6f < 0.02 V,
the current—voltage characteristics are essentially linear. This implies that the InAs/GaSb
heterojunction under small applied voltages has the properties of an Ohmic contact, in
agreement with the experimental results (Esaki 1980). In addition, we show the calculated
dimensionless conductan€®/ Gmax as a function of applied voltagg at a temperature of
100 K in figure 5, where5 s« is the maximum value of the conductanGe

Finally, the dimensionless current densify.;/ Jmax @s a function of temperaturg is
shown in figure 6 for a constant applied voltag@2b V under forward bias. The figure
shows that the current density is inversely proportional to the temperature of the system. As
the temperature increases, the number of electrons available for recombination decreases;
thus the current density decreases with increasing temperature.
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Appendix

In this appendix, we consider the case in which an external magnetic field is applied
perpendicularly to the plane of the interface. To take into account heterostructures grown
in an arbitrary crystal direction, we define an angldetween the growth axis and the
c-axis corresponding to the [001] crystal direction (Singh and Wallace 1983). The energy
dispersion relation within each layer is written as

2n+1 _
7V ALt fify T Ak £

P A

E,) =
Y (En) 32

As
where
Ay = fisir?[0] + f2co[d]
Az = (f1 — f2) sin[g] cosp]
Az = [PX(E, + Eo+ 8)*coS[0] + PX(E, + Eo)*sirf[0]]

and!/ is the usual cyclotron radius, amdis the Landau quantum number.
Following the same method as described in the theory section, we found the values of
the reflected and transmitted amplitud€$:= C,/C_ andC; = C/C_, where

C = 2P P (el + BLAA)
Ci = (KAt ahan £ thafan £ cBappa + kAL BLBA £ C0BABA £ E5 Bhan)
F AkBePajas + cPafas + (Bl e + kB EBL e
+ D)L + (B Blas)
with
= (ahas + Bife) T a=sinfm] B =cosk]
T, = tan [tan[d P g1/ P1 g7]]
1= (f1sirf[0] + f2coS[0])goy "
2 =[(f1— fo)goy " sinlg] cosp] +i3P2gogegry ~*sino]l[2n + 1]
t3 = P| Py g0g186(COSO] + v/2sirP[0]) + icosP]] (2n + 1)/(v/2y).

The transmission and reflection coefficients are givenTby= J;/Ji and R = J;/J;,
respectively. Herel, = JECJCt, Jo = JACIC,, and J; = J®, where

Ji = E(Pf /g1)(sin[8] £ h cosp)) sin[p] + ;(Puzgg/D)(COSP] T h sin[d]) cosp]
+ é(Pfgg/D)(Sin[G] + h cosp]) sin[o]
1 .
+ 3 (Pfg1/D)(cosp] F hsinfo]) cosp]

+ 5(PLgr/D)(in] + h cospl) sin@ll k.ae + k.1
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1 ) ) . .
+ 3P P /D)[k.a'B + k.pla]l(gs — g7)(sin[] £ h cosP]) sin[f]

+ (¢1— ga)(COS] F h sino]) cosm} fec
with
h = (f2— f1)sin[d]cospl/(f>cos 0] — f1sirf[6])

and wherecc stands for the complex conjugate.
The recombination rate per unit energy is given by

Nmm

1
R(Ey) = =5 Y @+ DI pa(En) Tas(E)VE(Ey)
A2 =~

where Nnin is defined asViin = min[nﬁ]ax, nﬁax]. The expression foryay is obtained from
the dispersion relation and is written as

Mimax = Round[%[(lzy F PLAA3/3)(fLA) 2 — 1]}

where Round][ ] indicates rounding the argument to the nearest non-negative integer. Finally
using R;(E,) together with equation (10), one can calculate the current density for the
heterojunction in the presence of an external magnetic field.
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